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Abstract 

How does actively seeking explanations for one’s 
observations affect information search over the course of 
learning? Generating explanations could plausibly lead 
learners to take advantage of the information they have 
already obtained, resulting in less exploration. Alternatively, 
explaining could lead learners to explore more, especially 
after encountering evidence that suggests their current beliefs 
are incorrect. In two experiments using a modified observe or 
bet task, we investigate these possibilities and find support for 
the latter: participants who are prompted to explain their 
observations in the course of learning tend to explore more, 
especially after encountering evidence that challenges a 
current belief.  

Keywords: explanation; exploration; learning; decision 
making 

 
In the decades leading up to his publication of On the 
Origin of Species, Charles Darwin recorded the titles of 687 
books of English non-fiction that he read. According to 
analyses by Murdock, Allen, and DeDeo (2017), Darwin’s 
reading fell into three epochs, each defined by a certain 
pattern of exploration, or broad search across new topic 
areas, and exploitation, or extended examination of texts 
within a similar topic area. Darwin’s example raises 
questions about the relationship between explanation and 
information search. In searching for an explanation (in 
Darwin’s case, a scientific explanation for the diversity of 
living things), do people pursue evidence broadly (i.e., 
exploring), or restrict their search to align with their current 
beliefs (i.e., exploiting)? Do these tendencies shift over time 
as new evidence is acquired? And if so, how? 
 Lombrozo and colleagues have proposed that when 
engaged in explanation, children and adults recruit 
explanatory considerations as evaluative constraints, 
rendering them more likely to generate and favor 
hypotheses that support “good” explanations – namely those 
that are simple, broad, and exhibit other explanatory virtues 
(Lombrozo, 2016; Williams & Lombrozo, 2010, 2013). 
There is also evidence that the hypotheses one generates and 
considers influence information search (Bonawitz, van 
Schijndel, Friel, & Schulz, 2012). Combining these 
proposals thus predicts that patterns of information search 
could be affected by engaging in the process of explanation.  
 To date, few studies have investigated the relationship 
between explanation and information search. In one study, 
Legare (2012) found that children’s explanations for an 
unexpected piece of evidence predicted their subsequent 
exploratory behavior. In more recent work, Ruggeri, 
Lombrozo, and Xu (in prep) found that prompting children 

to explain relationships in a target domain prepared them to 
ask more efficient questions on a subsequent 20-questions 
task in that domain. Neither study, however, was designed 
to test the causal influence of generating explanations on 
decisions to explore in a dynamic learning task, nor were 
they designed to examine adults’ exploratory behavior. 

In two experiments, we investigate how explanation 
generation affects patterns of exploration by prompting 
adult learners to explain as they search for information over 
the course of a category learning task. To accomplish this, 
we draw on research from the reinforcement learning 
literature on the explore-exploit dilemma (Cohen, McClure, 
& Yu, 2007; Kaelbling, Littman, & Moore, 1996). As 
defined in this literature, exploration involves seeking new 
information, while exploitation involves seeking reward (by 
taking advantage of the information one has already 
acquired). For example, in the observe or bet task (Navarro, 
Newell, & Schulze, 2016; Tversky & Edwards, 1966), 
agents must choose between “observing” which of two 
bulbs lights up on a given trial (without receiving any 
reward) or “betting” which bulb they think will light up for 
the chance to earn a reward (without observing that trial’s 
result). Each bulb lights up with some fixed probability that 
the learner must infer through a period of observation. In 
this task, observation is equated with exploration (i.e., 
information seeking with no potential for reward) and 
betting is equated with exploitation (i.e., reward seeking 
with no potential for information).  

The Present Research 
In the present research, we propose a new method, the 
contextual observe or bet task (inspired by the contextual 
multi-armed bandit task; Langford & Zhang, 2008). In this 
task, a set of “context variables” (i.e., features of the options 
that vary across trials) can be used to predict the option that 
will provide a reward on each trial. Successful performance 
depends on learning to identify and use these variables. This 
method integrates a more complex, real-world learning task 
into an active, dynamic learning environment. We can 
answer the question “when do explainers choose to 
explore?” by measuring when learners choose to observe 
rather than bet.  

To develop a contextual observe or bet task well suited to 
exploring the effects of explanation on information search, 
we adapt the stimuli from Williams and Lombrozo (2010). 
In a set of three studies, Williams and Lombrozo presented 
learners with four exemplars from each of two novel 
categories. Category members could be classified by a
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Figure 1: a. Typical trial (Expts. 1 and 2): Both robots can be classified by the 100% rule (foot shape) and the 75% rule 
(body/head shape); b. Non-obvious anomaly trial (Expts. 1 and 2): Both robots can be classified by the 100% rule but not the 

75% rule; c. Obvious anomaly trial (Expt. 2): Both robots can be classified by the 100% rule, but only one robot can be 
classified by the 75% rule. Category labels were only displayed if a participant chose to observe and are included here for 

clarity. 
 

salient rule that accounted for 75% of exemplars or a subtle 
rule that accounted for 100% of exemplars. Participants who 
were asked to explain the category membership of each 
exemplar were more likely to discover the 100% rule than 
participants who engaged in a control task.  

For our contextual observe or bet task, we present learners 
with pairs of category exemplars over a number of trials. On 
each trial, learners can choose to “observe” the category 
labels of the exemplars or “bet” which exemplar they 
believe belongs to a given category. Learners are thus free 
to determine when to seek information (exploration/ 
observation) and when to seek reward (exploitation/betting) 
as they learn the features that predict category membership 
(context variables). 

Prior work motivates two hypotheses regarding the effects 
of explanation generation on explore-exploit decision 
making. By Hypothesis 1, explaining could lead learners to 
greater exploitation. Previous research suggests that people 
use the first explanation they receive as a benchmark by 
which to judge subsequent explanations (Ihme & Wittwer, 
2015) and use their current explanation to decide between 
competing hypotheses for new data (Johnson & Krems, 
2001). Learners may thus prefer the first explanation they 
generate. This tendency towards accepting the first 
explanation in a series could lead people to switch to 
exploitation after arriving at an initial explanation, even if it 
is based on scant evidence. We suggest that learners may 
thus be more willing to quickly settle on a hypothesis that 
aligns with their initial beliefs based on the first pieces of 
information gathered, leading to increased exploitation.  

By Hypothesis 2, explaining could lead learners to greater 
exploration. This hypothesis is consistent with one 
interpretation of the findings from Williams and Lombrozo 
(2010): when prompted to explain, participants continued to 
“search” the stimuli until they found a good explanation, 
rather than settling for the salient but imperfect 75% rule. 
Relatedly, Williams, Lombrozo, and Rehder (2013) found 
that explainers seemed to perseverate in looking for a 
perfect classification rule, even when none was available. If 
explainers explore until they find a good explanation, then 
evidence that a candidate explanation is inadequate could be 
a critical cue that leads explainers to engage in further 
exploration. Indeed, Williams and Lombrozo (2010) found 
that explaining anomalies (i.e., exceptions to the 75% rule) 
was particularly powerful in encouraging learners to reject 

an imperfect rule and discover a better alternative (see also 
Williams, Walker, & Lombrozo, 2012). However, this 
finding was not experimentally linked to an increase in 
exploration or information search, which makes it possible 
that anomalous evidence influenced discovery via other 
mechanisms. It is thus an open question whether 
explanation has a causal impact on exploration, and if so 
whether this impact is most pronounced when the evidence 
that is being explained contradicts one’s current beliefs.  

For our contextual observe-or-bet task, Hypothesis 1 thus 
predicts that relative to control participants, those who are 
prompted to explain will make more “bet” choices. In 
contrast, Hypothesis 2 predicts that relative to control 
participants, those prompted to explain will be more likely 
to observe, especially on trials following the observation of 
information that is anomalous with respect to initial beliefs, 
which we expect to correspond to the obvious rule that 
accounts for 75% of exemplars. In two experiments, we test 
these hypotheses. 

 
Experiment 1 

Method 
Participants Participants for both experiments were 
recruited from Amazon Mechanical Turk and paid $0.85 for 
participating in the 8.5-minute study. Participation in both 
experiments was restricted to users in the United States with 
a 95% or higher approval rating based on at least 50 
previous tasks. Participants in Experiment 1 were 302 adults 
(143 males and 159 females) ranging from 18 to 74 years of 
age (Mage = 34) and were randomly assigned to the explain 
condition (N = 151) or the control condition (N = 151). 
Ninety-four additional participants (44 in the explain 
condition and 50 in the control condition) were excluded for 
failing to pass two attention checks (see below). 
 
Materials Thirty-two images of “alien robots” (see Figure 
1) were designed based on the stimuli used by Williams and 
Lombrozo (2010). Robots varied along four dimensions: 
foot shape, body/head shape, left-half color, and right-half 
color. Twenty-two different foot shapes were used, each of 
which appeared on no more than two robots. All Glorps had 
feet that were pointy on the bottom surface, and all Drents 
had feet that were flat on the bottom surface. Overall, 75% 
of Glorps had round bodies/heads, 25% of Glorps had 
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square bodies/heads, 75% of Drents had square bodies/ 
heads, and 25% of Drents had round bodies/heads. The 
color dimensions were irrelevant to category membership.  

Foot shape (pointy/flat) was a “100% rule” that accounted 
for the category membership of all robots, and body/head 
shape (round/square) was a “75% rule” that only accounted 
for the category membership of 75% of the robots.  
 
Procedure Participants were introduced to Glorp robots and 
Drent robots. On each of 16 trials, participants were shown 
a Glorp-Drent pair. Robots were paired such that no color 
appeared more than once in a pair, and all atypical Glorps 
were paired with atypical Drents. The side on which Glorps 
and Drents appeared was counterbalanced across trials. 
Pairs were presented in a random order, aside from the first 
four trials. For these trials, typical exemplars were presented 
on trials one, two, and three (“typical trials”), and atypical 
exemplars were presented on trial four (“anomaly trial”).  

On each trial, participants were given the choice to 
“observe” – offering the opportunity to gain information but 
no reward – or “bet” – offering the opportunity to gain 
reward but no information. If a participant chose to observe, 
the participant was shown which robot from that pair was a 
Glorp and which was a Drent. Participants in the explain 
condition were asked to explain why the indicated robot was 
a Glorp robot, while participants in the control condition 
were asked to write down any thoughts they had about that 
trial. Participants were required to spend at least 10 seconds 
completing these tasks before advancing to the next trial. No 
points were awarded when a participant chose to observe. 

If a participant chose to bet, the participant was asked to 
indicate which robot they thought was a Glorp. If their 
choice was correct, the participant would gain one point, 
and if their choice was incorrect, they would lose one point. 
However, no feedback was given on bet trials; participants 
were not shown their scores until the task was complete.1  

Participants were instructed to attempt to maximize their 
score, but also to learn how to differentiate Glorps and 
Drents. All participants were explicitly told that they would 
be asked to report any patterns that could help differentiate 
Glorps and Drents at the end of the task. Participants were 
not incentivized on the basis of their score, a point to which 
we return in the General Discussion. 

After the 16-trial observe or bet task, participants reported 
any patterns they had found that differentiated Glorps and 
Drents and indicated what percentage of robots they thought 
could be accurately characterized using that pattern. 
Participants could report up to eight patterns. Participants 
also completed an attention check in which they had to 
distinguish between a robot they had seen during the 
previous task and three robots that they had not seen before. 
All novel robots were obviously different in appearance 
from Glorps and Drents. A second attention check required 

                                                             
1 Participants were also prompted to report their confidence after 
both observe and bet trials; in the interest of space we do not report 
analyses of confidence here.  

 

participants to read the instructions from the first attention 
check, which directed them to ignore the question that 
followed and instead type a specific word into the answer 
textbox. 
 
Results 
Rule Discovery In the explain condition, 17% of 
participants reported the 100% rule after completing the 
observe or bet task, while only 6% of participants in the 
control condition reported this rule. A chi-square analysis 
revealed that this difference was significant, χ2(1) = 8.27, p 
= .004. While these discovery rates seem quite low, they are 
not inconsistent with previous research (Williams & 
Lombrozo, 2010). Additionally, these results replicate 
Williams and Lombrozo’s (2010) finding that generating 
explanations promotes the discovery of broad rules. 

 
Figure 2: Experiment 1 choices by condition and trial. 

Vertical line indicates first anomaly trial. Error bars: 1 SE. 
 
Explanation and Exploration We used a generalized linear 
mixed effects model to predict participants’ observe/bet 
choices over time, with a random intercepts term to capture 
individual differences. The choice to observe rather than bet 
was significantly predicted by linear and quadratic effects of 
trial number, analysis of deviance: χ2(1) = 212.70, p < .001 
and χ2(1) = 78.04, p < .001, respectively. Increasing trial 
number led to more betting at a decreasing rate over time. 
Condition was not a significant predictor of observe/bet 
choices (see Figure 2). This indicates no overall differences 
between the two conditions in explore/exploit decisions.   

Next, we investigated the effect of explaining anomalies 
on subsequent exploration. For participants who observed 
on the first anomaly trial and thus received information 
contradicting the 75% rule, explain condition participants 
were more likely than control condition participants to 
continue to observe on the following trial, at a level 
approaching significance, χ2(1) = 3.49, p = .06. There was 
no condition difference in observation on the trial following 
the first anomaly for participants who did not observe on the 
anomaly trial, and thus did not receive information 
contradicting the 75% rule, χ2(1) = 0.55, p = .46. However, 
a logistic regression predicting observation following the 
anomaly trial by condition and observation on the anomaly 
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trial did not reveal a significant interaction (b = 0.71, OR = 
2.03, z = 1.24, p = 0.21), likely due to the small proportion 
of our sample that observed the anomaly (27%).  

To analyze whether the increased exploration following 
an observed anomaly led to increased discovery of the 100% 
rule, we performed a logistic regression predicting 100% 
rule discovery by condition and observation on the trial 
following the first anomaly. Both condition (b = 1.12, OR = 
3.05, z = 2.73, p = .006) and post-anomaly observation (b = 
0.80, OR = 2.23, z = 2.17, p = .03) were significant 
predictors. Thus, while explanation had an effect on 100% 
rule discovery above and beyond the effects of post-
anomaly observation, this increase in exploration following 
the observation of an anomaly also predicted rule discovery. 
 
Discussion 
In Experiment 1, we found that after observing information 
that contradicted the 75% rule, participants who were asked 
to explain tended to explore more often than control 
participants. This exploration increased the probability of 
discovering a broad rule that accounted for all observations. 
These findings support Hypothesis 2: explanation led 
learners towards greater exploration after receiving evidence 
that current beliefs were wrong or incomplete. 
These results leave open two possibilities for how 

explanation interacts with anomalous information. We 
previously suggested that explaining anomalies encourages 
learners to reject their current (imperfect) hypothesis, 
prompting subsequent exploration in the service of finding a 
more satisfactory alternative. On this view, explanation 
affects the downstream processing that follows the detection 
of an anomaly. However, there is also evidence that 
generating explanations can help learners articulate and 
recognize their current beliefs, rendering a conflict between 
those beliefs and subsequent information more apparent 
(Chi, de Leeuw, Chiu, & LaVancher, 1994). Extending 
these ideas, it could be that generating explanations on trials 
that preceded an observed anomaly helped learners 
recognize the anomalies as such, and that increased 
sensitivity to anomalies is what drove effects of explanation. 

In Experiment 2, we evaluate these alternatives by 
introducing violations of the 75% rule that are detectable 
whether or not the participant chooses to observe on that 
trial (“obvious anomalies”). When an atypical exemplar 
from one category (e.g., a round Drent) is paired with a 
typical exemplar from the other category (e.g., a round 
Glorp), both robots have the same shape. Since each trial 
contains one Glorp and one Drent, the trial is a clear 
violation of the 75% rule. If explanation enhances anomaly 
detection by solidifying learners’ initial beliefs, we would 
expect participants who are prompted to explain to observe 
at a higher rate on the first obvious anomaly trial relative to 
those who are not prompted to explain. On the other hand, if 
explaining an anomaly is instead what prompts learners to 
reject prior beliefs and seek out better alternatives, we 
would expect effects of explanation to emerge only after an 
anomaly has been observed, and to manifest as an increase 

in observation on trials following obvious anomalies. In 
Experiment 2, we test these potential accounts. 

We additionally varied the point at which the first obvious 
anomaly was introduced – on trial 4 versus trial 8 – to test 
whether the timing of anomalous information affects rule 
discovery and/or interacts with explanation. If the power of 
explaining anomalous information emerges from the 
conflict between the novel information and prior beliefs, 
then introducing anomalous evidence later in the task (after 
beliefs have been solidified) should lead to a larger effect of 
explanation on exploration. If, however, explanation biases 
learners towards their prior beliefs (Walker, Lombrozo, 
Williams, Rafferty, & Gopnik, 2017; Williams & 
Lombrozo, 2013), increasing the strength of learners’ beliefs 
by increasing the amount of consistent evidence prior to 
introducing an anomaly could decrease the effect of 
anomalous evidence on subsequent exploration. 

Experiment 2 
Method 
Participants Participants were 400 adults (192 males, 204 
females, and 4 who did not specify gender) ranging from 18 
to 73 years of age (Mage = 34) who were randomly assigned 
to the explain condition (N = 203) or the control condition 
(N = 197), as well as early anomaly timing (N = 197) or late 
anomaly timing (N = 203). One hundred fifty-three 
additional participants (73 in the explain condition and 80 in 
the control condition) were excluded for failing to pass two 
attention checks mirroring those used in Experiment 1. 

Materials The 32 alien robot images used were identical to 
those used in Experiment 1.  
 
Procedure The procedure was largely identical to 
Experiment 1. Three atypical Glorps were paired with 
atypical Drents (“non-obvious anomalies”). One atypical 
Glorp was paired with a typical Drent, and one atypical 
Drent was paired with a typical Glorp (“obvious 
anomalies”).  

For those assigned to early anomaly timing, the first 
obvious anomaly was presented on trial 4. For late anomaly 
timing, the first obvious anomaly was presented on trial 8. 
The second obvious anomaly was always on trial 15. Non-
obvious anomalies were randomly distributed throughout 
the remaining trials, excluding the first three trials. 

Results 
Rule Discovery Within early anomaly timing participants, 
33% of explain participants and 27% of control participants 
reported the 100% rule. Within late anomaly timing 
participants, 30% of explain participants and 14% of control 
participants reported the 100% rule. A logistic regression 
analysis revealed that participants in the explain condition 
were significantly more likely than participants in the 
control condition to discover the 100% rule (b = 0.60, OR = 
1.81, z = 2.55, p = .01). Participants with late anomaly 
timing were somewhat less likely than participants with 
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early anomaly timing to discover the 100% rule (b = -0.43, 
OR = 0.65, z = -1.84, p = .07).  
 
Explanation and Exploration We used a generalized linear 
mixed effects model to predict participants’ observe/bet 
choices over time, with a random intercepts term to capture 
individual differences. The choice to observe rather than bet 
was significantly predicted by condition (explain vs. 
control) and linear and quadratic effects of trial number, 
analysis of deviance: χ2(1) = 4.47, p = .03; χ2(1) = 273.93, p 
< .001; and χ2(1) = 150.40, p < .001, respectively. Anomaly 
timing (early vs. late) was not a significant predictor of 
observation. Explain participants were more likely to 
observe than control participants, and increasing trial 
number increased the likelihood of betting at a decreasing 
rate over time (see Figure 3).  

Next, we analyzed exploration on the first obvious 
anomaly trial by performing a logistic regression with task 
(explain vs. control) and anomaly timing (early vs. late) as 
predictors. Participants with late anomaly timing were 56% 
less likely to observe on the first anomaly trial relative to 
participants with early anomaly timing (b = -0.82, OR = 
0.44, z = -2.81, p = .005), indicating that fewer participants 
observed the first obvious anomaly when it was presented 
later in the task. Condition was not a significant predictor of 
anomaly observation, nor was the interaction between 
condition and anomaly timing. These findings suggest that 
explanation did not exert effects on discovery by increasing 
the rate at which obvious anomalies were detected. 

To analyze exploration following an anomalous 
observation, we performed a logistic regression predicting 
observation on the trial following the first obvious anomaly, 
with condition (explain vs. control) and anomaly timing 
(early vs. late) as predictors. This revealed a marginally 
significant interaction between task and anomaly condition 
(b = 0.88, OR = 2.40, z = 1.78, p = .07). For late anomaly 
timing, explain participants were more likely than control 
participants to observe on the trial following the first 
obvious anomaly, χ2(1) = 6.85, p = .009. This difference 
was not significant for early anomaly timing, χ2(1) = 0.01, p 
= .92. These findings support the idea that explanation 
affects learning by increasing exploration in the face of 
anomalous evidence; they also challenge the idea that 
effects of explanation are restricted to anomaly detection. 
Explainers were no more likely to choose to observe an 
obvious anomaly, but were more likely (in the late anomaly 
condition) to follow up with additional observation. 

To analyze whether this increased exploration following 
an observed anomaly led to increased discovery of the 100% 
rule, as well as whether condition had an effect on rule 
discovery above and beyond the effects of such exploration, 
we performed a logistic regression predicting 100% rule 
discovery by condition and observation on the trial 
following the obvious anomaly. Both condition (b = 0.49, 
OR = 1.64, z = 2.10, p = .04) and observation following the 
first obvious anomaly (b = 0.79, OR = 2.20, z = 3.12, p = 
.002) were significant predictors of 100% rule discovery. 

Discussion 
These results suggest that explanation generation leads to 
greater exploration after observing evidence that challenges 
a current hypothesis. This difference in exploratory behavior 
does not depend on simply noticing the presence of 
contradictory information, but instead depends specifically 
on one’s attempts to explain this anomalous information.  

We also found a suggestive difference between early and 
late anomaly timing. Further research is clearly warranted, 
but the effect of explaining an obvious anomaly may be 
more powerful as the degree of conflict between the 
anomaly and one’s current beliefs is increased. 

 

 
Figure 3: Experiment 2 choices by condition, anomaly 

timing, and trial. Vertical lines indicate obvious anomaly 
trials. Error bars: 1 SE. 

 
General Discussion 

In two experiments, we investigated how explanation 
generation affects exploration over the course of a category 
learning task. Lombrozo and colleagues (Lombrozo, 2016; 
Williams & Lombrozo, 2010, 2013) have proposed that 
generating explanations recruits a set of inductive 
constraints on hypothesis generation and selection, which 
can lead to the discovery of broad, simple, and generalizable 
rules and patterns. In the present research, we extend this 
account, suggesting that this learning outcome is partially 
dependent upon generating explanations for anomalous 
observations, which increases a learner’s propensity to seek 
additional evidence.  

Our results are consistent with Legare’s (2012) finding 
that children’s explanations for surprising events predicted 
their exploratory behavior. In the present research, however, 
we establish a causal link between explanation and 
exploration, and demonstrate that this link holds not only for 
children’s causal learning (as proposed by Legare), but also 
for adults’ category learning.  

That said, many open questions remain. For example, 
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might explanation affect explore/exploit decisions by 
shifting participants’ confidence on each trial (e.g., Auer, 
2002)? Does explaining affect motivation, which could also 
be achieved by incentivizing reward? Equally important is 
identifying boundary conditions on our effects: are there 
situations in which explaining anomalies could lead learners 
to explain them away (Chinn & Brewer, 1998), and thus 
engage in greater exploitation?  

While some of the effects reported here failed to reach 
statistical significance, we did find similar results across two 
experiments. Unfortunately, the effect sizes are limited by 
the small proportion of participants who are able to discover 
the 100% rule. Future work might benefit from more 
sensitive paradigms. Additionally, the paradigm used here 
allowed participants to gain some information on each trial 
without engaging in exploration. Since exemplars from one 
category were always presented with exemplars from the 
other category, participants could identify the features that 
differed between the two categories without choosing to 
observe. Future work will limit potential learning to 
observation trials in order to better isolate the effects of 
explanation on information search.  

In sum, our findings suggest that attempting to explain 
observations that are anomalous with respect to one’s 
current beliefs encourages further exploration. This may be 
one mechanism by which generating explanations affects 
learning, and provides compelling evidence that top-down 
constraints on hypothesis generation and selection affect not 
only the conclusions that learners draw, but also the ways in 
which they seek information – whether that information 
comes from 19th century texts or a robot classification task. 
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